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Potato yield and quality are linked to cover crop and soil microbiome, 
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Abstract
Crop-specific cultivation practices including crop rotation, cover cropping, and fertilisation are key measures for sustainable 
farming, for which soil microorganisms are important components. This study aims at identifying links between agronomic 
practices, potato yield and quality as well as soil microorganisms. We analysed the roles of cover crops and of the soil 
prokaryotic, fungal, and protistan communities in a long-term trial, differing in crop rotation, i.e. winter wheat or silage 
maize as pre-crop, presence and positioning of oil radish within the rotation, and fertilisation, i.e. mineral fertiliser, straw, 
manure, or slurry. Up to 16% higher yields were observed when oil radish grew directly before potatoes. Losses of potato 
quality due to infection with Rhizoctonia solani-induced diseases and common scab was 43–63% lower when wheat + oil 
radish was pre-crop under manure or straw + slurry fertilisation than for maize as pre-crop. This contrast was also reflected 
by 42% higher fungal abundance and differences in β-diversity of prokaryotes, fungi, and protists. Those amplicon sequence 
variants, which were found in the treatments with highest potato qualities and differed in their abundances from other treat-
ments, belonged to Firmicutes (2.4% of the sequences) and Mortierellaceae (28%), which both comprise potential antagonists 
of phytopathogens. Among protists, Lobosa, especially Copromyxa, was 62% more abundant in the high potato quality plots 
compared to all others, suggesting that specific higher trophic organisms can improve crop performance. Our findings sug-
gest that successful potato cultivation is related (1) to planting of oil radish before potatoes for increasing yield and (2) to 
fertilisation with manure or straw + slurry for enriching the microbiome with crop-beneficial taxa.
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Introduction

Potatoes (Solanum tuberosum L.) play an important role 
in a healthy human diet (Camire et al. 2009) and were 
the fourth most produced food crop in 2021 (www.​fao.​
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org/​faost​at/). However, potatoes have a high demand for 
fertilisers and are susceptible to a wide range of pathogens 
and pests, often necessitating pesticide treatments (Wu 
et al. 2013). Among the soil-borne pathogens and pests 
acting on potatoes, Fiers et al. (2012) listed 30 genera 
of bacteria, fungi, protists, and nematodes. Furthermore, 
there are viruses and arthropod larvae like wireworms 
(Elateridae), which reduce potato yield and quality (Fiers 
et al. 2012). Reported potato yield losses due to pathogens 
were 100% by the common scab-inducing actinobacteria 
Streptomyces spp. (Charkowski et al. 2020), up to 47% 
by the ascomycete Colletotrichum coccodes (Wallr.) 
S. Hughes (Daami-Remadi et al. 2010), and 30% by the 
dry core-inducing basidiomycete Rhizoctonia solani J.G. 
Kühn (Tsror 2010). Blemishes like common scab, black 
dots (C. coccodes), black scurf (R. solani), and silver scurf 
(ascomycete Helminthosporium solani Durieu & Mont.) 
only damage the skin. Consequently, they do not induce 
yield reduction like for H. solani (Errampalli et al. 2001), 
but severely reduce the economical value of potatoes 
(Fiers et al. 2012).

Crop rotation counteracts decreases in yield and qual-
ity associated with monocultures over time. A diverse crop 
rotation not only increases yields (Blecharczyk et al. 2023; 
Larkin et al. 2021; Scholte 1990; Wright et al. 2017), but 
also decreases negative effects on quality (Larkin and Hon-
eycutt 2006) as well as disease incidents, i.e. abundance of 
affected plants or their marketable parts, and severity, i.e. 
the extent of damage (Larkin and Honeycutt 2006; Wright 
et al. 2017). For the crop at the end of the rotation, its per-
formance depends on the choice of the preceding one (Hon-
eycutt et al. 1996; Mohr et al. 2011; Specht and Leach 1987).

Cover cropping is an important means to support cash 
crops like potatoes. Cover crops, also referred to as catch 
crops, take up soil nitrogen (N) with Brassicaceae like oil 
radish, trapping up to 200 and more kg N ha−1 (Justes 2017). 
As 40–60% of plant biomass N derives from soil organic 
matter (Tonitto et al. 2006), decayed cover crops play an 
important role in nutrient management of subsequent cash 
crops (Wilson et al. 2019). They also increase stocks of soil 
organic carbon (Poeplau and Don 2015), thus, improving soil 
physical conditions for cash crop growth (Kaspar and Singer 
2011). Overall, cover crops can lead to increased cash crop 
yields (Marcillo and Miguez 2017; Osipitan et al. 2018), 
though the effectiveness depends on agronomic practices 
like fertilisation (Justes 2017). Control of pests and phy-
topathogens is a further function (Kaspar and Singer 2011; 
Tiwari et al. 2022), as inclusion of cover crops can disrupt 
epidemic cycles by reducing receptiveness of the soil and 
by allelopathic bio-fumigation (Justes 2017). For instance, 
Brassicaceae cover crops are known to reduce severity of 
common scab in potatoes (Charkowski et al. 2020; Tiwari 
et al. 2022).

The soil microbial community comprising, e.g., prokary-
otes, fungi, and protists, provides ecosystem services sup-
porting cash crops. Growth of microorganisms improves soil 
conditions by aggregation (Oades and Waters 1991; Tisdall 
and Oades 1982). Microorganisms release plant available 
nutrients by weathering of minerals (Gadd 2007; Uroz et al. 
2009) and by degrading soil organic matter (Krishna and 
Mohan 2017) or provide nutrients to plants such as by N2 
fixation, phosphorus (P) solubilisation or production of 
iron chelating siderophores (Bhattacharyya and Jha 2012; 
Vukicevich et al. 2016). Plant growth-promoting rhizobac-
teria (PGPR), fungi, and oomycetes (both PGPF) as well as 
mycorrhizal fungi can enhance plant growth by production 
of phytohormones, relieve of stress or induction of stress tol-
erance, and induction of immune responses, which strength-
ens the plants’ resistance and defence against pathogens 
(Akhtar and Siddiqui 2010; Bhattacharyya and Jha 2012; 
Hossain et al. 2017; Vukicevich et al. 2016). Microorgan-
isms further suppress phytopathogens by competition for 
nutrients and colonisation sites (Jayaraman et al. 2021), by 
production of antibiotics (Akhtar and Siddiqui 2010; Deveau 
et al. 2018; Rodrigo et al. 2021), and by parasitising or prey-
ing (Geisen et al. 2018; Olanya and Lakshman 2015; Velicer 
and Mendes-Soares 2009; Vukicevich et al. 2016). Higher 
trophic-level protists control these processes by predation 
and they also directly benefit plants by liberating nutrients 
via the microbial loop (Geisen et al. 2018). Depending on 
the microbial community, soils can become disease suppres-
sive or conducive. Suppressive soils harbour higher micro-
bial biomass, biodiversity, and activity than non-suppressive 
soils (Chandrashekara et al. 2012; Jayaraman et al. 2021), 
which can be strongly altered by management, fertilisation 
(Hemkemeyer et al. 2015; Schwalb et al. 2023b; Zhao et al. 
2019), and cover cropping (Finney et al. 2017; Kim et al. 
2020).

In the current study, we compared different potato cultiva-
tion methods, which aim at increasing yield and quality. For 
this reason, we analysed soil abiotic and microbial factors 
in order to explain the link between agronomic approaches, 
soil microorganisms, and potato production. The Pfalzdorf 
long-term potato trial, which ran from 2001 to 2019 in the 
Lower Rhine region, Germany, employed different crop 
rotations, i.e. winter wheat or silage maize as pre-crop as 
well as presence and positioning of oil radish within the 
rotation, and fertilisation types, i.e. mineral fertiliser, straw, 
manure, or slurry. We hypothesised that those combinations 
of crop rotation and fertilisation, which led to highest potato 
yields and qualities in terms of lowest disease incidences, 
(1) had positioned the cover crop directly before potatoes. 
These combinations further led to soils containing (2) higher 
amounts of nutrients and higher microbial (3) abundances, 
(4) activities, and (5) diversity. Furthermore, they led to 
(6) microbial communities harbouring more potentially 

http://www.fao.org/faostat/
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beneficial taxa in terms of plant growth promotion and dis-
ease suppression.

Materials and methods

Study site and experimental design

The study site was located in the Lower Rhine region in 
Germany (51°43′7.6"N, 6°09′18.1"E, 15 m above sea level) 
on a loess-derived Stagnic Luvisol with silty loam texture 
(18.5% 63–2000 µm, 72.3% 2–63 µm, 9.2% < 2 µm). Dur-
ing the trial, mean annual precipitation and temperature was 
770 mm and 10.9 °C, respectively (Berendonk 2020). The 
trial ran from 2001 until 2019 starting with potato (culti-
var Marabel) as initial crop followed by six full three-year 
crop rotation cycles (Table 1). The treatments differed in 
the positioning of the cash crops winter wheat (Triticum 
aestivum L., different cultivars with Ornica being last) and 
silage maize (Zea mays L., different cultivars with Oldham 
being last) and the cover crop oil radish (Raphanus sativus 
var. oleiformis Pers., cultivar Adios) within the crop rota-
tion. Furthermore, there were differences in tillage (absence 
or timing of ploughing) and fertilisation (mineral fertiliser, 
shredded straw, cattle manure, pig slurry).

The amounts of N applied depended on the content of 
inorganic N in the soil and potential delivery from litter 
decay to reach target values of N content in the soil of 
140 kg ha−1 for potatoes, 210 kg ha−1 for winter wheat, 
190 kg ha−1 for maize, and 40 kg ha−1 (mineral fertiliser) 
or 80 kg ha−1 (manure/slurry) for oil radish. Similarly, 
basic mineral fertilisation of all treatments with P, potas-
sium (K), magnesium (Mg), and calcium (Ca) depended on 
respective contents and pH in 0–30 cm of soil. For details 
of fertiliser application see Berendonk (2020). Seven treat-
ments (T1–T8 with T3 not being sampled) were arranged 
in a randomised block-design with four replicates at a plot 
size of 9 × 9 m2. The composition of the factors crop rota-
tion, fertilisation, and tillage in the treatments was not fac-
torial, but the treatments followed common farming prac-
tices of the region (Table 1). As plant protection differed 
between maize and wheat and, in accordance to needs, 
between years, treatments T1–T6 (wheat as pre-crop) and 
T7–T8 (maize as pre-crop) received different types and 
amounts of pesticides, while within each group of treat-
ments plant protection was the same; it was also similar 
for potatoes, the most intensively managed crop in the crop 
rotations (see Supplementary Table S1).

Table 1   Three-year crop rotation cycle with factors differing between treatments (T). Management of cash crops and cover crops are high-
lighted by grey and blank background, respectively

T1 T2 T4a T5 T6 T7 T8

Ploughed Yes Yes Yes Yes Yes No No

Fertilisation Mineral Mineral Mineral Mineral Slurry Mineral Mineral

Cash crop I Silage maize Silage maize Silage maize Silage maize Silage maize Winter wheat Winter wheat

Ploughed Yes Yes

Fertilisation Mineral Mineral

Cover crop –b –b –b –b –b Oil radish Oil radish

Ploughed Yes Yes Yes Yes Yes Noc Noc

Fertilisation Mineral Mineral Mineral Mineral Mineral Mineral Mineral

Cash crop II Winter wheat Winter wheat Winter wheat Winter wheat Winter wheat Silage maize Silage maize

Ploughed Yes No No No

Fertilisation Mineral Mineral+strawd Manured Straw+slurryd

Cover crop Fallow Oil radish Oil radish Oil radish Oil radish Fallow Fallow

Ploughed Spring Noc Spring Spring Spring Autumn Spring

Fertilisation Mineral Mineral Mineral Mineral Slurry Mineral Mineral

Cash crop III Potato Potato Potato Potato Potato Potato Potato

Times ploughed
per crop rotation 3 3 3 3 3 2 2

Times fertilised
per crop rotation

3 4 4 4 4 4 4

a Treatment T3 was not sampled.
b Winter wheat was growing since mid-autumn.
c If oil radish had not been killed by frost, 2 L ha-1 glyphosate was applied. 
d Incorporated into soil by rotary harrow or spike drum.
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Potato harvest and quality assessment, long‑term 
soil sampling

Potatoes were harvested in autumn and yield was deter-
mined after each crop rotation cycle, i.e. not for the initial 
year 2001. At time of the establishment of the field trial, 
it was common practice to determine potato yield as fresh 
weight and it is still an important determinant for the market 
prize. Due to this legacy and the practice-orientation of the 
trial, only fresh weights were determined, even though dry 
weights should be reported in future trials (Bashan et al. 
2017). Potato quality was determined by assessing 100 ran-
domly picked potatoes per replicate visually for tuber defor-
mations, and traits induced by different fungal, bacterial, and 
faunal pests. In 2016 and 2019 only 25 potatoes per replicate 
were picked in accordance with the Federal Plant Variety 
Office but scaled up to 100 to enable comparison. Assess-
ments of the different quality traits started in different years 
depending on their first appearance.

Accompanying destructive soil sampling took place in 
autumn of each year from the first 30 cm in order to deter-
mine long-term soil nutrient concentrations. The field rep-
licates of each year of these long-term soil samples were 
combined prior to analyses and sent cooled at + 5 °C to the 
LUFA Münster, Germany, for analysis. As this combining 
had led to a loss of field variability, only variability in time 
could be considered and, thus, the long-term nutrient results 
are of limited explanatory power.

Soil sampling in 2019 and 2015 and basic soil 
parameters

For microbial properties and contemporary soil nutrient con-
centrations, soil sampling took place in October 2019, two 
days after harvest of the potatoes. Earlier samplings were 
conducted in February 2015 under young winter wheat 
(T1–T6) or oil radish (T7–T8) as preceding vegetation and, 
for molecular genetic analyses only, in May 2019 shortly 
after seeding of the potatoes with fallow after winter wheat 
(T1) and maize (T7–T8), respectively, or oil radish (T2–T6) 
as preceding vegetation. In May 2019 the ridges were sam-
pled from the top down to the level of the furrows without 
harming the seeding potatoes, while in 2015 and in October 
2019 the first 10–15 cm were sampled to account for the 
levelling of the former ridges. Per replicate, 30 subsamples 
were taken across a plot, pooled, and homogenised during 
sieving to < 2 mm. The samples were either stored at + 4 °C 
until further analysis or, for 2015 and May 2019 samples, 
frozen at -20 °C for molecular genetic analysis.

Water holding capacity was determined according to 
Wilke (2005). For pH measurement the soil was manually 
stirred at 5 min intervals in a 0.01 M CaCl2 solution at a 
ratio of 1:2 (w/v) and measured after 30 min (2015 samples: 

1:5 (w/v) in distilled water). For total carbon (C), N, and 
sulphur (S) determination soil was milled and dry com-
busted at 900 °C in a Vario Max Cube CHNS (Elementar, 
Langenselbold, Germany). For extractable soil elements see 
below.

Incubation experiment, activity measurements, 
and water‑stable aggregates

After moistening the soil up to 50% of its water holding 
capacity, a 100 g fresh weight sample in a 1-L-bottle and 
further 10 g in a 100-mL-bottle were pre-incubated at 22 °C 
in the dark for 7 d. Afterwards the 10 g sample was stored 
frozen (-20 °C) until determination of inorganic N (t0). The 
1-L-bottle was supplied with a vial containing 10 mL 0.5 M 
NaOH and incubated for a further 7 d to determine basal 
respiration. Soil from this incubation was used to measure 
soil extractable and microbial elements (see below) and, 
after storage at -20 °C, inorganic N (t1), water-stable aggre-
gates, and molecular parameters were measured. For the 
2015 samples the incubation conditions were as following: 
3 d pre-incubation, 35 d main incubation, and exchange of 
alkali traps every 7 d with reduction of NaOH concentration 
to 0.25 M after 14 d; measurements were constrained to 
basal respiration and soil extractable and microbial biomass 
C and N.

Inorganic  N, i.e. the sum of NH4
+-N, NO2

−-N, 
and NO3

−-N, was measured using a continuous segmented 
flow analyser (AA3, SEAL Analytical, Norderstedt, Ger-
many) and net N mineralisation within 7 d was calculated as:

For basal respiration, the alkali traps were back-titrated 
with 0.1 M HCl according to Pell et al. (2006) using Titro-
Line 6000 (SI Analytics, Mainz, Germany). Basal respira-
tion divided by soil microbial biomass C resulted in the 
metabolic quotient (qCO2).

Water-stable aggregates of replicates B–D were deter-
mined after air-drying and sieving to > 1 mm in a wet-
sieving apparatus (Eijkelkamp, Giesbeek, The Netherlands) 
according to the manufacturer. In brief, a mass of 4 g soil 
was wetted with distilled water using a sprayer and left to 
soak for 5 min. Subsequently, the sample was wet-sieved 
with mesh-size 250 µm at 34 strokes per minute, first in 
distilled water for 3 min (WH2O) and subsequently in 0.05 M 
NaOH for 5 min (WNaOH). After drying at 105 °C, water-
stable aggregates (WSA) were calculated as:

(1)�Nmin

[

�g ⋅ g−1d−1
]

=
Nmin,t1

− Nmin,t0

7d

(2)

WSA[%] =
WNaOH−WNaOH,empty − mNaOH

WNaOH−WNaOH,empty − mNaOH +WH2O
−WH2O,empty

⋅ 100%
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with WNaOH, empty and WH2O, empty being the respective empty 
weights of the vessels and mNaOH being the mass of NaOH 
used in the vessel.

Soil microbial and extractable elements

Microbial biomass C, N, and P were determined by fumi-
gation-extraction according to Vance et al. (1987), Brookes 
et al. (1985), and Brookes et al. (1982), respectively, with 
conversion values 0.45 (Joergensen 1996), 0.54 (Joergensen 
and Mueller 1996), and 0.40 (Brookes et al. 1982), respec-
tively. Further chloroform-labile elements, i.e. microbial 
derived elements for which conversion values are not yet 
available, were extracted with 0.01 M CaCl2 at 1:20 (w/v) 
ratio and shaking at 200 rpm for 1 h (Schwalb et al. 2023a). 
While C and N were analysed in the Multi C/N 2100 S ana-
lyser (Analytic Jena, Jena, Germany), P and other elements 
were measured in an inductively coupled argon plasma opti-
cal emission spectrometer (ICP-OES, Optima 8000, Perkin 
Elmer, Waltham, USA). Due to the low microbial biomass, 
only for manganese (Mn) reliable data were obtained among 
the chloroform-labile elements. However, all extracts of the 
non-fumigated samples were considered as extractable, i.e. 
easily bioavailable, elements including C, N, and P. Elemen-
tal ratios were calculated on a molar and not on a mass base 
(Schwalb et al. 2023b).

DNA extraction and quantitative real‑time PCR

Genomic DNA was extracted using the FastDNA™ SPIN 
Kit for Soil and FastPrep®-24 bead-based homogeniser 
(both MP Bio, Santa Ana, USA). The extraction proto-
col was slightly modified according to Hemkemeyer et al. 
(2014) by adjusting volumes of sodium phosphate buffer 
and supplied “MT” to 950 µL and 120 µL, respectively. 
The bead-beater was run twice at 6.5 m s−1 for 45 s. Fur-
thermore, DNA bound to the glass milk was additionally 
washed two times, using 1 mL 5.5 M guanidine thiocyanate 
to reduce soil contaminants. Finally, eluate obtained with 
100 µL distilled water was added back to the column to elute 
a second time to increase elution efficiency. DNA lost dur-
ing the extraction process, i.e. remaining in pellets and non-
transferred supernatants, was accounted for by dividing gene 
copy numbers (see below) by kDNA:

with a = mass of empty reaction tube; b = mass of tube and 
added supplied “PPS”; c = mass of tube, “PPS”, and added 
crude DNA extract; d = mass of tube after centrifugation 
and removing supernatant; ms = soil sample fresh weight; 

(3)kDNA =
(c − d) ⋅

c−b

c−a

ms ⋅
u

100%+u
+ mspb + mMT

u = gravitational soil water content in %; mspb = mass of 
sodium phosphate buffer; mMT = mass of “MT” buffer.

Quantification of microbial abundances was done in the 
Light Cycler 480® II (Roche Diagnostics, Mannheim, Ger-
many), using the Light Cycler 480® Probes Master for bac-
terial 16S rRNA genes (primers BAC338F and BAC805R 
and probe BAC516F) and archaeal 16S rRNA genes (prim-
ers ARC787F and ARC1059R and probe ARC915F) (Yu 
et al. 2005). Fungal ITS1 sequences were quantified using 
LightCycler® 480 SYBR Green I Master with the primers 
NSI1 and 58A2R (Martin and Rygiewicz 2005). Reaction 
mixtures, cycling conditions, and, in case of fungi, condi-
tions of melting curve analysis have been published with 
open access elsewhere (Wichern et al. 2020). For 2019 
samples the standard curve was prepared from amplicons 
derived from Bacillus subtilis (bacteria), Methanobacterium 
oryzae (archaea), and Fusarium graminearum (fungi) and 
inserted into a plasmid using the pGEM®-T Vector Sys-
tem II Kit (Promega, Madison, USA). In the case of 2015 
samples, amplicons derived from environmental samples 
without insertion into a plasmid. Efficiencies (Eff) of the 
qPCR calculated as:

with m = slope of the standard curve are given in the Sup-
plementary Table S2.

Illumina MiSeq sequencing and bioinformatic 
analyses

Aliquots of the 2019 samples’ DNA extracts were lyoph-
ilised prior to library preparation. The V4 region of the 
16S rRNA gene was PCR-amplified to investigate prokary-
otic communities using the primer set 515F (GTG​YCA​
GCMGCC​GCG​GTAA) and 806R (GGA​CTA​CNVGGG​
TWT​CTAAT) (Caporaso et  al. 2011). Meanwhile, the 
V4 region of the 18S rRNA gene was broadly targeted to 
investigate eukaryotic communities using the primer set 
V4_1f (CCA​GCA​SCYG​CGG​TAA​TWC​C) and TAReu-
kREV3 (ACT​TTC​GTT​CTT​GAT​YRA​) (Bass et al. 2016). 
PCR was performed in a 20 µl volume consisting of 4 µl of 
5× reaction buffer, 2 µL dNTPs (2.5 mM), 0.8 µL of each 
primer (10 µM), 0.4 µL FastPfu Polymerase, 10 ng of DNA 
template, and the rest being ddH2O. Amplification was 
performed with the following temperature regime: 5 min 
of initial denaturation at 95 °C, followed by 30 cycles of 
denaturation (95 °C for 30 s), annealing (55 °C for 30 s), 
extension (72 °C for 45 s), and a final extension at 72 °C for 
10 min. PCR products were pooled in equimolar concentra-
tions of 10 ng µL−1. Paired-end sequencing was performed 
on an Illumina MiSeq sequencer at Personal Biotechnology 

(4)Eff =

(

10
−

1

m − 1

)

⋅ 100%
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(Shanghai, China). Sequencing of the 18S rRNA gene of one 
May 2019 sample (T1, replicate D) failed.

We analysed raw sequencing data of 16S rRNA gene 
and 18S rRNA gene using previously established proto-
cols (Xiong et al. 2021) with some modifications. For 16S 
rRNA gene analyses, paired-end reads were merged with 
USEARCH v11 (Edgar 2010) and merged sequences with 
expected errors > 1.0 or a length < 220 bp were removed. We 
further identified amplicon sequence variant (ASV) with the 
UNOISE3 algorithm (Edgar 2016), which simultaneously 
removed chimeras. We removed the 16S ASVs that con-
tained fewer than 10 reads across all the samples. Finally, 
the 16S ASV representative sequences were matched against 
the RDP database (Cole et al. 2014; Wang et al. 2007). To 
focus on prokaryotic communities, we removed the reads 
assigned as chloroplast, mitochondria, and eukaryotes. For 
18S rRNA gene analyses, merged sequences with a length 
shorter than 300 bp were removed. Representative eukary-
otic ASVs were taxonomically classified against the PR2 
database, which though focussing on protists also covers 
fungi (Guillou et al. 2013). To focus on fungal and protistan 
communities, we removed sequencing reads of Rhodophyta, 
Streptophyta, and Metazoa. Finally the eukaryotic data set 
was split into a fungal and a protistan one. In certain cases, 
consensus sequences were further checked, using the Stand-
ard Nucleotide BLAST at https://​blast.​ncbi.​nlm.​nih.​gov/​
Blast.​cgi (Altschul et al. 1990).

Statistical analyses

Statistical analyses were performed in R (R Core Team 
2023). Microbial and elemental ratios were natural loga-
rithm-transformed prior to statistical analyses (Isles 2020) 
and, if parametric, are given as geometric means ± mean 
95% confidence intervals as obtained by R package Desc-
Tools (Signorell et al. 2022). Other data with continuous 
response are either given as arithmetic mean ± standard devi-
ation or as median ± median absolute deviation in depend-
ence of the statistical test used. Residuals were checked 
for normal distribution using Q-Q-plots supplemented by 
normal curve analysis and Shapiro–Wilk test as provided 
by stat.desc command from pastecs (Grosjean and Ibanez 
2018). Similarly, evaluation of residual-versus-fitted plots 
for checking for homoscedasticity was supplemented by 
Brown-Forsythe test using leveneTest command from car 
(Fox and Weisberg 2019). In cases requirements for Analysis 
of Variance (ANOVA) were not met, data were Box-Cox 
transformed using MASS (Venables and Ripley 2002). One-
way ANOVA was performed using car and, if requirements 
after transformation were still not met, Scheirer-Ray-Hare 
test was employed using rcompanion (Mangiafico 2023). For 
considering block effects, this was included as main effect.

In order to account for repeated measures, for potato yield 
over time, a linear mixed effects model with treatment, year, 
and block as fixed effects and plot as random effect was 
employed using nlme (Pinheiro et al. 2023), but the accord-
ing Box-Cox transformation value λ was obtained from a 
linear model excluding the random effect. In the case of 
maize and wheat yields the rotation cycle instead of the year 
had to be included as fixed effect. In contrast, in the case of 
long-term soil data, which were obtained after combining 
the field replicates, sampling time was used for replication 
and the rotation cycle served as random effect.

Potato quality is expressed as percentage, though data 
was obtained by counting. Potato quality data over the whole 
course of the field trial was analysed with generalised linear 
mixed models and potato quality data of 2019 alone was ana-
lysed in addition with generalised linear models, both based 
on negative binomial distribution using glmer.nb from lme4 
(Bates et al. 2015) and glm.nb from MASS, respectively, 
together with Anova command from car. Dispersion was 
checked using package DHARMa (Hartig 2022). Depending 
on the nature of residuals, as post hoc tests either Estimated 
Marginal Means using emmeans (Lenth 2023) together with 
the cld command from multcomp (Hothorn et al. 2008) or 
Dunn test using FSA (Ogle et al. 2023) together with the cld-
List command from rcompanion were conducted. All graph-
ics were prepared using ggplot2 (Wickham 2016) with sup-
port of scales (Wickham et al. 2023), patchwork (Pedersen 
2023) and cowplot (Wilke 2020).

Sampling efficiency of high-throughput sequencing data 
was estimated using rarefaction curves calculated with 
iNEXT (Chao et al. 2014; Hsieh et al. 2020) indicating suf-
ficient sampling of prokaryotes, fungi, and protists (Sup-
plementary Fig. S1). Calculations for α- and β-diversity 
were conducted using the R package vegan (Oksanen et al. 
2022). In order to consider different library sizes with small-
est ones being 132,649, 5,895, and 36,969 for prokaryotes, 
fungi, and protists, respectively (for averages see Supple-
mentary Table S6), each ASV table was rarefied randomly 
1,000 times and α- and β-diversity were calculated itera-
tively with finally determining the medians (Hemkemeyer 
et al. 2019). Observed richness, abundance-based coverage 
estimator (ACE), exponential Shannon–Wiener index (eH’), 
and Pielou’s index (J’) were determined using the estimateR 
command. The exponential form of the Shannon-Wiener 
index was chosen, because it uses numbers of species as 
unit and is thus easier to interpret (Krebs 1999). Prior to 
Bray–Curtis dissimilarity determination (vegdist command), 
rarefied counts were square-root transformed to reduce the 
weight of the most abundant taxa. Differences between 
treatments were compared by permutational multivariate 
Analysis of Variance (PERMANOVA, adonis2 command). 
Despite highly significant differences, subsequent pairwise 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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comparison using pairwiseAdonis (Arbizu 2017) could not 
discern the differing treatments. Homogeneity of variance 
was checked via permutational analysis of multivariate dis-
persions (PERMDISP, betadisper command) and for visu-
alisation non-metric multidimensional scaling (NMDS, 
metaNMDS command) was employed.

The taxa differing between treatments were identified 
using edgeR (Robinson et al. 2010). Prokaryotes, fungi, and 
protists were analysed separately by starting with selecting 
data using cut-offs of 50, 200, and 100 counts per million 
in at least four samples, respectively, in accordance with 
the different orders of magnitude between libraries of the 
three taxonomic groups (Chen et al. 2015). The different 
library sizes within each taxonomic group were accounted 
for by normalisation based on the weighted trimmed mean of 
log expression ratios “TMM”-method (Robinson and Osh-
lack 2010). This analysis used the generalised linear model 
approach (McCarthy et al. 2012) with control of the false 
discovery rate using the algorithm by Benjamini and Hoch-
berg (1995). Results are shown as heatmaps with displayed 
taxa being restricted to the most abundant ones.

Results

Long‑term crop yields

When winter wheat was the preceding cash crop, planting of 
oil radish as cover crop in between increased potato yields 
by 11–16% (F = 49.7, p < 0.001, Fig. 1a). The different fer-
tilisers employed on oil radish had no further effects. When 
silage maize preceded potatoes and, thus, oil radish within 
the crop rotation was positioned prior to maize, potato yields 
were 8% lower than or similar to the treatment completely 
omitting the cover crop. In contrast, in both maize-as-pre-
crop treatments, maize yields were 4% higher compared 
to all other treatments (F = 4.37, p = 0.007, Fig. 1b), while 
wheat yields did not differ between any cultivation method 
(F = 1.51, p = 0.230, Supplementary Fig. S2a). During six 
crop rotations and ignoring the extreme year 2010, potato 
yields decreased by 36–44% compared to the first harvest 
in 2004 depending on the treatment (F = 533.9, p < 0.001, 
Fig. 1a).

Long‑term potato quality

The reduction of potato quality was highest with maize as 
pre-crop, contrasting wheat + oil radish as pre-crop with 
either manure or straw + slurry application, which lowered 
infections by 63% and 43% with common scab (Χ2 = 26.5, 
p < 0.001, Fig. 1c) and black scurf (Χ2 = 26.1, p < 0.001, 
Fig. 1d), respectively. A similar result was observed for dry 

core with straw + slurry application, leading to 58% lower 
infections (Χ2 = 29.5, p < 0.001, Fig. 1e). For silver scurf an 
adverse effect was found in the latter treatment, in which 
52% more potatoes were infected than under wheat + oil 
radish with mineral or straw alone fertilisation (Χ2 = 17.9, 
p = 0.006, Fig. 1f). The different cultivation methods had 
no long-term effects on deformations (Χ2 = 9.41, p = 0.152), 
black dot disease (Χ2 = 6.56, p = 0.363), and wireworm 
attacks (Χ2 = 4.14, p = 0.658), despite of noticeable occa-
sions in specific years (Supplementary Fig. S2b–d). Like 
yield, potato quality decreased over time in all rotation sys-
tems, i.e. disease incidences increased 3–9-fold for com-
mon scab, 16–49-fold for black scurf (except for 2019), 
14–65-fold for dry core, and 1.2–3.1-fold for silver scurf 
(Figs. 1c–f, Supplementary Table S3) and in 2019 wire-
worms became noticeable.

Long‑term soil abiotic characteristics

During the whole trial, wheat + oil radish-pre-crop treat-
ments receiving manure or straw + slurry contained 9–12% 
and 13–15% higher concentrations of soil organic matter 
(SOM) and Mg, respectively, than under maize as pre-crop 
ploughed in spring. Both treatments showed 13–21% more 
P and 21–27% more K than most other treatments (Sup-
plementary Fig. S3a–d, Table S4). Where oil radish grew 
in autumn, the content of inorganic N was three-fold lower 
than where the cover crop was omitted (F = 9.0, p < 0.001, 
Fig. S3e). Soil pH did not differ (Fig. S3f, Table S4).

Plant and soil abiotic characteristics in 2019 
and 2015

In contrast to the long-term results given above, at potato 
harvest in 2019, plant quality characteristics hardly dif-
fered between treatments (Table S3). Similarly, no treat-
ment effects were observed on soil abiotic factors (Table 2). 
Soil had 62% water-stable aggregates and a pH of 6.4. Total 
contents of C and N were 11.7 and 0.95 mg g−1, respec-
tively, and for extractable nutrients like P (65.7 µg g−1) and 
K (181 µg g−1), see Table 2. Already in February 2015, 
when sampling took place at another stage of the crop rota-
tion, hardly any differences in abiotic characteristics were 
observed (Supplementary Table S5, Fig. S4a).

Microbial abundances, activities, and α‑diversities 
in 2019 and 2015

At harvest in 2019, microbial biomass C was unaffected 
by cultivation treatments, which was also true for micro-
bial derived N, P, and Mn, microbial elemental molar ratios 
(C:N:P 13:2:1) and the metabolic quotient qCO2 (Table 3). 
However, fungal abundances, indicated by ITS1 copies, were 
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Fig. 1   Yield of potatoes (a) and silage maize (b) and potato quality 
indicated by infection with pathogenic Streptomyces spp.-induced 
common scab (c), Rhizoctonia solani-induced black scurf (d) and dry 

core (e), and Helminthosporium solani-induced silver scurf (f) over 
several years. Diamonds represent means of four replicates; letters 
indicate significant differences between treatments (p < 0.05)
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Table 2   Abiotic soil factors 
of samples taken at harvest in 
October 2019 (n = 4)

a Mean or median in dependence of the statistical test used
b Standard deviation or median absolute deviation
c ANOVA (F) or Scheirer-Ray-Hare test (H)
d n = 3 (only blocks B–D)

Response variable Estimatea Deviationb Test resultc p

Water holding capacity / % 49.9  ±  1.5 H = 6.08 0.415
Water-stable aggregates / %d 61.6  ±  9.0 F = 1.50 0.259
pHCaCl2 6.4  ±  0.1 F = 0.55 0.763
Total C / mg g−1 11.6  ±  1.0 H = 9.41 0.152
Total N / mg g−1 0.95  ±  0.08 F = 1.61 0.201
Total S / mg g−1 0.12  ±  0.02 H = 6.51 0.368
Extractable C / µg g−1 59.6  ±  9.0 H = 7.84 0.250
Extractable N / µg g−1 16.7  ±  4.8 F = 1.25 0.328
Extractable P / µg g−1 65.7  ±  12.2 F = 1.31 0.301
Extractable S / µg g−1 29.0  ±  12.2 F = 1.56 0.216
Extractable K / µg g−1 164.1  ±  31.7 H = 3.28 0.773
Extractable Ca / µg g−1 987  ±  150 H = 3.33 0.767
Extractable Mg / µg g−1 99.1  ±  22.2 H = 6.01 0.422
Extractable Mn / µg g−1 0.024  ±  0.000 H = 5.39 0.495
Extractable Si / µg g−1 31.4  ±  21.6 F = 0.13 0.990

Table 3   Biotic soil factors of 
samples taken at harvest in 
October and May 2019 (n = 4)

a Mean (geometric mean for ratios) or median in dependence of the statistical test used
b Standard deviation, median absolute deviation, or, for geometric mean, mean 95% confidence interval
c ANOVA (F) or Scheirer-Ray-Hare test (H)

Response variable Estimatea Deviationb Test resultc p

October 2019
  Microbial biomass C / µg g−1 123.4  ±  24.3 F = 1.99 0.121
  Microbial biomass N / µg g−1 25.0  ±  5.2 F = 1.51 0.231
  Microbial biomass P / µg g−1 27.7  ±  26.3 H = 5.97 0.427
  Microbial biomass C:N (mol/mol) 5.7  ±  0.4 F = 1.56 0.215
  Microbial biomass C:P (mol/mol) 10.9  ±  6.5 H = 3.56 0.736
  Microbial biomass N:P (mol/mol) 2.7  ±  0.9 F = 1.43 0.323
  Microbial biomass Mn / µg g−1 0.33  ±  0.17 F = 1.59 0.205
  Microbial biomass C:Mn (mol/mol) 1,902  ±  910 H = 9.11 0.167
  Basal respiration / CO2-C µg g−1 d−1 5.54  ±  2.55 F = 0.67 0.675
  qCO2 / µg CO2-C mg−1 MBC d−1 48.2  ±  30.9 F = 0.31 0.921
  Net N mineralisation / Nmin-N µg g−1 d−1 0.71  ±  0.51 F = 1.46 0.248
  Bacterial 16S rRNA gene copies g−1 1.43·1010  ±  0.24·1010 H = 6.72 0.347
  Archaeal 16S rRNA gene copies g−1 2.98·108  ±  0.40·108 F = 0.69 0.661
  Bacteria:archaea ratio 45.9  ±  3.1 F = 1.77 0.162
  Bacteria:fungi ratio 70.3  ±  4.0 F = 2.14 0.098
  Archaea:fungi ratio 1.5  ±  0.1 F = 1.59 0.211

May 2019
  Bacterial 16S rRNA gene copies g−1 1.37·1010  ±  0.23·1010 F = 0.55 0.763
  Archaeal 16S rRNA gene copies g−1 2.57·108  ±  0.44·108 F = 1.34 0.292
  Bacteria:archaea ratio 53.4  ±  2.4 F = 1.66 0.188
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42% more abundant where wheat + oil radish grew before 
potatoes with manure or straw + slurry application than 
in treatments with maize as pre-crop (F = 7.05, p < 0.001, 
Fig. 2a). In contrast, bacterial and archaeal 16S rRNA gene 
copies g−1 soil as well as microbial ratios did not respond 
to treatments (Table 3, molecular bacteria:archaea:fungi 
ratio 70:2:1). Observed richness of prokaryotic, fungal, 
and protistan amplicon sequence variants (ASVs) as well 
as estimated richness, diversity index, and, except for pro-
tists, evenness were also unaffected by cultivation treatments 
(Supplementary Table S6, Fig. S4b). With few exceptions, 
these patterns were in line with findings from sampling in 
2015 (Table S5, Fig. S4c) and at seeding time (Table 3, 
Figs. 2b–d, Supplementary Table S6, Fig. S4d).

Microbial β‑diversity and taxa differing 
between cultivation treatments in 2019

Among prokaryotic communities, two groups of treatments 
clustered most strongly away from each other at harvest: one 
group consisted of those treatments with wheat + oil radish 
as pre-crop and manure or straw + slurry application, while 
the other group contained the treatments with maize as pre-
crop (F = 1.16, p = 0.009, Fig. 3a). Clustering between differ-
ent pre-crops was even more pronounced for fungi (F = 1.63, 

p = 0.001, Fig. 3b) and protists (F = 1.46, p = 0.001, Fig. 3c). 
Where wheat was the pre-crop, fungi were further separated 
by straw + slurry application. At seeding, mentioned clusters 
in all three microbial groups were even stronger separated 
from each other (Fig. 4). An overview of the microbial com-
munity compositions is given in Supplementary Results S1 
and Figs. S5–S7.

Analysis of ASVs differing between cultivation methods 
at harvest showed that 0.5% of the prokaryotic ones mak-
ing up to about 3% of the sequences in the libraries derived 
from treatments with wheat + oil radish as pre-crops under 
manure or straw + slurry application, while they accounted 
for 1.3–1.6% of the sequences in the other treatments. 
Strongest drivers of this pattern were Firmicutes (2.0–2.4%) 
with the classes Bacilli, Clostridia, and Erysipelotrichia 
(Fig. 5, Supplementary Table S7). Both maize-as-pre-crop 
treatments shared a Streptomyces ASV (Zotu569, Actinobac-
teria, 0.06%), which according to BLAST was not related to 
common scab-inducing species.

Among fungi, 8% of ASVs differed between treatments, 
of which most of them could only be classified to subphylum 
or class level (Fig. 6, Supplementary Table S8). While in 
most treatments they accounted for 3–10% of the sequences, 
under straw + slurry application they reached 38%. This 
treatment fostered several ASVs comprising Mortierella/

Fig. 2   Fungal abundance in samples of October 2019 (a)  and May 
2019 (b) and fungal ratios in May 2019 with bacteria (c) and archaea 
(d). Diamonds represent means of four replicates; letters indicate sig-
nificant differences between treatments (p < 0.05); statistical results 

of ANOVA (F) and Scheirer-Ray-Hare (H) tests were a: F = 7.05, 
p < 0.001; b: H = 12.94, p = 0.044; c: F = 9.02, p < 0.001; d: F = 12.29, 
p < 0.001
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Mucoromycotina (28%) with next relatives all belong-
ing to Mortierellaceae according to BLAST (Mucoromy-
cota) and Pezizomycotina/ Pezizomycetes (Ascomycota, 
9%) with the majority being related to Ascodesmis. Both 

maize-as-pre-crop treatments shared Acremonium persici-
num (Ascomycota, 0.3%).

Also, the 3% protistan ASVs differing were most abun-
dant in the treatment with straw + slurry application with 

Fig. 3   Non-metric multidimen-
sional scaling plots of samples 
taken at harvest in October 2019 
for treatments differing in the 
crop rotations of silage maize 
(SM), winter wheat (WW), oil 
radish (OR), and potatoes (P). 
Upright rounded rectangles 
indicate the position of the 
centroids



536	 Biology and Fertility of Soils (2024) 60:525–545

18% of the sequences, while in the other treatments they 
ranged 11–14%. Here a Neoheteromita-ASV (Cerco-
zoa, 3.2%) was 2.3-fold more abundant (Fig. 7, Supple-
mentary Table S9). However, in both the straw + slurry 
and the manured treatment ASVs of Lobosa, especially 

Copromyxa, and Ochrophyta were 62% and two-fold, 
respectively, more abundant than in other treatments. 
Where maize was the pre-crop, Chlorophyta-ASVs were 
64% more abundant. For more differing ASVs, see Sup-
plementary Results S2.

Fig. 4   Non-metric multidimen-
sional scaling plots of samples 
taken at seeding in May 2019 
for treatments differing in the 
crop rotations of silage maize 
(SM), winter wheat (WW), oil 
radish (OR), and potatoes (P); 
upright rounded rectangles 
indicate the position of the 
centroids. Results of PER-
MANOVA were a: F = 1.232, 
p = 0.001; b: F = 2.006, 
p = 0.001; c: F = 1.574, 
p = 0.001



537Biology and Fertility of Soils (2024) 60:525–545	

When calculating β-diversity across seeding and harvest 
data, NMDS (data not shown) and PERMANOVA indicated 
a strong effect of sampling time for composition of prokary-
otic (F = 3.50, p = 0.001), fungal (F = 4.66, p = 0.001), and 
protistan communities (F = 8.22, p = 0.001) without signifi-
cant interaction of treatment and sampling time (p ≥ 0.478). 
Percentages of differing prokaryotic, fungal, and protistan 
ASVs and their contribution to respective libraries were 
always much larger at seeding with 0.8% (library contribu-
tion 3.0–6.9%), 14% (9.2–45.7%), and 4.7% (15.9–25.4%), 
respectively, than at harvest. Also, the 50 most abundant dif-
fering ASVs differed between both sampling times (cf. Fig-
ure 5–7 and Supplementary Figs. S8–S10, Tables S10–12). 
However, several ASVs showing differences at harvest 
already displayed these differences at seeding time like sev-
eral ASVs of the Firmicutes (e.g. Zotu10, 290, 697), Strepto-
myces (Zotu629, 569), Mucoromycotina (Zotu310, 12, 128), 
Pezizomycetes (Zotu87, 1791), A. persicinum (Zotu1279), 
Plasmodiophorida (Zotu16), Neoheteromita (Zotu7), Pra-
siolales (Zotu167), Cercozoa (Zotu43), and Sandonidae 
(Zotu100).

Discussion

Potato yield and the role of oil radish as cover crop

Combinations of wheat as pre-cash crop and subsequent 
oil radish led to highest potato yields in the current study. 
The different cultivation methods led to differences in the 
long-term soil characteristics (SOM, P, K, Mg), but their 
patterns did not match with yield, thus, there is no corre-
lation between yield and concentration of these nutrients. 
For samplings in 2015 and 2019, there were hardly any dif-
ferences in the nutritional status of soils, i.e. hypothesis 2 
partly rejected for yield. Also, the differences in microbial 
abundances, activities, and α-diversities, i.e. hypotheses 3–5 
must be rejected for yield. The same is true for microbial 
β-diversity patterns. Thus, yield effects can be related to the 
presence of the cover crop or its position within the rotation.

The lower yield in the treatment omitting the cover crop 
could be connected to the number of fertilisation occasions, 
which was one less per cycle. Furthermore, soil inorganic 
N content was lower after oil radish cropping (T2–T8) than 

Fig. 5   Top 50 abundant prokaryotic ASVs significantly differing 
between potato cultivation treatments at harvest in October 2019. 
ASVs are given as class for purpose of ordering, the lowest taxo-
nomic rank to which an ASV was identified, ASV number (Zotu), and 

the mean percentage of ASV sequences to all sequences in the treat-
ment containing the highest abundance of the given ASV. For statisti-
cal results see Supplementary Table S7
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under fallow after wheat (T1), despite omitted fertilisa-
tion, indicating N uptake by the cover crop. Nutrients taken 
up remain on the field and get released upon the decay of 
cover crops (Kaspar and Singer 2011; Maltais-Landry and 
Frossard 2015). On the one hand, the cover crop with its 
accompanying fertilisation represents a direct input of addi-
tional nutrients and, on the other hand, it prevents the loss 
of already available nutrients by leaching, e.g. nitrate, or 
gaseous emission, e.g. nitrous oxide. Accordingly, potatoes 
of the treatment omitting oil radish missed out on further 
nutrition. Thus, hypothesis 2 is rejected for yield, as the 
according nutrients were not stored freely in the soil but in 
the cover crop.

When maize was the pre-crop of potatoes, oil radish was 
grown one year earlier and, thus, directly before maize. 
Therefore, it was maize, which benefitted from the cover 
crop as shown by higher maize yields in these treatments 
as also observed by Kaye and Quemada (2017). In contrast, 
wheat always grew before the cover crop and did not show 
direct yield benefits. Consequently, the cover crop directly 
grown before potatoes causes the difference in yield, rather 

than direct impacts by wheat or maize as pre-crops. Ben-
efits in potato yield by oil radish have also been reported by 
Hamzaev et al. (2007). As silage maize gets harvested later 
than winter wheat, there is not enough time for subsequent 
growth of cover crops for sufficient N uptake (Kivelitz 2017; 
Komainda et al. 2016). Thus, maize as pre-crop has an indi-
rect effect on potato yield by precluding cover crops with 
function as catch crops, i.e. hypothesis 1 confirmed for yield.

Potato quality and microbial communities

Highest long-term potato qualities regarding lowest infection 
with common scab, black scurf, and dry core were found 
where wheat + oil radish was the pre-crop under applica-
tion of manure or straw + slurry, contrasting both treatments 
with maize as pre-crop. The high qualities were accompa-
nied by highest long-term concentrations of extractable P 
and K, whereas both contrasting treatments only partially 
matched the long-term patterns of SOM and extractable 
Mg, i.e. hypothesis 2 partly confirmed, partly rejected for 
quality depending on nutrient. Higher nutritional supply 

Fig. 6   Fungal ASVs significantly differing between potato cultiva-
tion treatments at harvest in October 2019. ASVs are given as phylum 
for purpose of ordering, the lowest taxonomic rank to which an ASV 
was identified, ASV number (Zotu), and the mean percentage of ASV 

sequences to all sequences in the treatment containing the highest 
abundance of the given ASV. For statistical results see Supplemen-
tary Table S8
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can strengthen the resistance of plants against pathogens 
(Chandrashekara et al. 2012). In 2019, when there were 
hardly any differences in potato qualities, there were no dif-
ferences in soil abiotic characteristics detectable. Similar to 
abiotic factors in 2015, this came along with missing dif-
ferences in microbial abundances, activity, and α-diversity, 
i.e. hypotheses 4–5 rejected for quality. Suppressive soils 
generally contain higher values in these microbial proper-
ties than non-suppressive soils (Chandrashekara et al. 2012; 
Jayaraman et al. 2021).

However, fungal abundance in 2019 was an exception, 
indeed matching the long-term quality patterns with posi-
tive correlation, i.e. hypothesis 3 mainly rejected for qual-
ity except in case of fungi. A similar result for fungi was 
not observed for the 2015 samples, when the field was in 
another stage of the crop rotation and two characteristic 
treatments (T6 and T8) were not included in qPCR analysis. 
However, the 2019 patterns of β-diversity of prokaryotes, 
fungi, and protists matched the long-term quality patterns. 
The different cultivation methods, i.e. pre-crop (wheat vs. 
maize including differences in tillage intensity and pesticide 

application) and different fertilisation types led to changes 
in the microbial community compositions. For instance, 
regarding the different types of fertilisation associated with 
the cover crop, a nutrient that is supplied in mineral form 
can address other microbial species than one supplied in 
organic form (Lilleskov et al. 2002). The match of disease 
suppression in treatments between 2004 and 2016 with fun-
gal abundance and microbial β-diversity in 2019 could be 
related to a microbial legacy as discussed below. In contrast, 
silver scurf showed a different pattern of treatments in regard 
to lowest or highest percentages of infected tubers, whereas 
black dot disease was unaffected by the different cultivation 
methods. Accordingly, confirmation or rejection of hypoth-
eses in regard to quality depends on kind of disease.

The omission of the cover crop leading to a fallow period 
had no obvious effect, as this treatment had medium disease 
incidence. Microbial communities clustered between both 
contrasting groups, together with the other wheat-as-pre-
crop treatments without animal-derived fertiliser. In contrast 
to meta-analytical findings (Kim et al. 2020), cover crop 
inclusion compared to omission had no significant effects on 

Fig. 7   Top 50 abundant protistan ASVs significantly differing 
between potato cultivation treatments at harvest in October 2019. 
ASVs are given on a high rank, e.g. phylum, for purpose of order-
ing, the lowest taxonomic rank to which an ASV was identified, ASV 

number (Zotu), and the mean percentage of ASV sequences to all 
sequences in the treatment containing the highest abundance of the 
given ASV. For statistical results see Supplementary Table S9
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microbial abundance, activity, or diversity in our study, i.e. 
hypothesis 1 cannot be related to hypotheses 3–5 for qual-
ity. For fungal communities in intensive potato production, 
it has been shown that, despite a three-year crop rotation, 
they will shift to a potato adopted community (Manici and 
Caputo 2009).

Comparison of differing ASVs between seeding 
and harvest

At harvest, in all treatments potatoes were grown, while at 
seeding time the recent rhizospheric legacy derived from three 
different preceding crops, i.e. oil radish cover crop, maize, or 
wheat still prevailed to an unknown extent. During potato 
growth the numbers and sums of contributions of differing 
ASVs were reduced along with the reduced plant diversity 
(from three pre-crops to one main crop), revealing the impor-
tance of considering the pre-crop legacy for soil microbial 
investigations. Nevertheless, several ASVs showing a specific 
association with a certain treatment were found at both time 
points. Remaining relic DNA cannot be ruled out (Levy-Booth 
et al. 2007) and, as many of the ASVs were classified as spore 
formers or showing other kinds of persistence (Bulman and 
Neuhauser 2017; Howe et al. 2009; Ottow 2011) like dor-
mancy (Joergensen and Wichern 2018), inactive cells might 
have contributed to the observed patterns. However, several of 
these ASVs include potential antagonists and plant growth pro-
moting rhizobacteria, which could have played a role in influ-
encing the quality of potatoes. As no microbiological investi-
gations were done at the beginning of the trial or throughout 
the 19 year trial, it can only be speculated whether the same or 
similar taxa were already involved in potato quality in the past.

Microbial members potentially involved in potato 
quality

Firmicutes, which drove the difference under manure and 
(straw +)slurry application, process fresh and simple sub-
strates with some taxa even being specialised on urinary 
sources and, after food sources decline, their cells can sur-
vive in the form of spores (Ottow 2011). The effect on the 
bacterial community composition in the manure and slurry 
treatments mainly derives from fostering members of the 
autochthonous community rather than from establishment 
of allochthonous livestock gut-derived bacteria (Chu et al. 
2007; Sun et al. 2015). Bacillus species/isolates are com-
monly found among genera suppressing diseases (Agrios 
2005), including common scab (Braun et al. 2017), R. solani-
induced diseases (Kiptoo et al. 2021), and silver scurf (Avis 
et al. 2010). Several Bacillus species/isolates are often con-
sidered as plant growth promoting rhizobacteria for potatoes 
(Calvo et al. 2010; Ekin 2019; Ghyselinck et al. 2013; Hanif 
et al. 2015). Paenibacillus is a known antagonist of R. solani 

(Brewer and Larkin 2005), while Lysinibacillus, Clostridium 
sensu stricto, and Turicibacter were enriched in the geocaulo-
sphere soil, i.e. the soil surrounding the tuber, associated with 
reduced common scab occurrence (Shi et al. 2019).

The finding of Ascodesmis among the Pezizomycotina/
Pezizomycetes in straw + slurry is not surprising, as this 
genus, though also found in soil, is strictly coprophilous (Kris-
tiansen 2011; van Brummelen 1981) and also some members 
of Mortierellaceae have been isolated from dung (Domsch 
et al. 2007). The latter family is often reported to degrade 
chitin (Domsch et al. 2007) and one member of Mortierella 
was found being antagonistic against common scab-inducing 
Streptomyces spp. (Tagawa et al. 2010). Under potato mono-
cultures, which become prone to pathogens over time, abun-
dances of Mortierellales were decreased (Liu et al. 2014).

Among protistan Lobosa, several mycophagous species 
also feed on spores (Geisen et al. 2016) and could thus be 
potential predators of phytopathogenic fungi. Especially the 
appearance of Copromyxa spp. in the manure/straw + slurry 
treatments is not surprising as these are coprophilic organisms 
which employ partly a “slime mould” life style (Brown et al. 
2011). Thus, the treatments leading to highest potato quality 
harboured more beneficial prokaryotic, fungal, and protistan 
taxa in terms of plant growth promotion and disease suppres-
sion, i.e. confirming hypothesis 6 in regard to potato quality.

In the treatments with maize as pre-crop, the time point 
of ploughing led to different driving ASVs. However, some 
ASVs were common amongst both. The genus Acremonium 
was increased in potato monocultures, which became prone 
to pathogens over time (Liu et al. 2014). As the Streptomy-
ces ASVs could not be identified further, their role remains 
unclear. Many non-pathogenic Streptomyces species are also 
common PGPR (Bhat et al. 2022) and suppressors of dis-
eases (Agrios 2005), including common scab (Braun et al. 
2017) and silver scurf (Avis et al. 2010). Despite incidences 
of infections increased over time, ASVs of phytopathogens 
were hardly detected in 2019 samples as discussed in Sup-
plementary Discussion S1.

Limitations of the study design

The design of the field trial was based on regional potato cul-
tivation and crop rotation practices and, thus, had not a facto-
rial design. Accordingly, some factors cannot be discerned. 
Tillage intensity and pest management differed not within, 
but between the treatments having wheat (T1–T6) and maize 
(T7–T8) as pre-crop and might had influenced the outcomes, 
which in the following are ascribed to the both pre-crop 
treatment groups. Furthermore, when in 2019 the samplings 
for microbial community analyses were completed, potato 
qualities showed no significant differences for the first time. 



541Biology and Fertility of Soils (2024) 60:525–545	

Therefore, this study discusses microbial data in the context of 
long-term agronomic results rather than just focussing on the 
concerted sampling year 2019. However, microbial commu-
nity abundances, activities, and diversities were only analysed 
in 2019 when potatoes were present and in the previous crop 
rotation cycle in 2015 with no potatoes being present. These 
communities represent the legacy of five to six crop rotation 
cycles under different treatments and the contemporary condi-
tions at the sampling times, which we cannot disentangle, as 
accompanying samplings had not been done during the earlier 
cycles. Nevertheless, we still believe that the major impact 
arises from the direct predecessor and results should mostly 
represent the legacy left by the crop grown directly before.

The results discussed above are in particular representa-
tive for the last crop rotation cycles, however, they likely 
show the imprint of the differences in crop rotation and 
management. It would be of high value if future long-term 
trials combine agronomic and microbial measurements con-
stantly to also document potential temporal changes in the 
microbiome with potential impact on potato yield and qual-
ity effects. However, this is hardly the case in the current 
literature, as either microbiologists or plant scientists with a 
focus on agronomy initiate investigations. We therefore have 
a strong plea for more truly interdisciplinary research with 
relevance for agricultural practise.

Conclusions

Six three-year crop rotation cycles of cultivation methods for 
potatoes, differing in pre-crop/tillage intensity, cover crop 
inclusion, and type of fertilisation led to clear impacts on 
yield and quality. On the one hand, the long-term differences in 
potato quality regarding common scab and R. solani-induced 
diseases were reflected by the community compositions 
of prokaryotes, fungi, and protists in 2019. This contrasted 
between wheat + oil radish under manure or straw + slurry 
application and the treatments with preceding maize. Several 
ASVs found in the first group of treatments correlated with 
higher potato qualities potentially caused by plant growth 
promoting rhizobacteria or antagonists of phytopathogens. 
Whether these taxa were already earlier involved in improved 
potato quality remains speculative in the current long-term 
trial. This first group of treatments also contained highest fun-
gal abundances and long-term soil P and K. On the other hand, 
potato yield was reflected by the presence or positioning of the 
cover crop within the rotation, as the crop directly succeed-
ing oil radish received its benefits and produced higher yields. 
This study demonstrates that a cover crop preceding potatoes 
and fertilisation with manure or straw + slurry can be recom-
mended for obtaining high yields and qualities. Future agro-
nomic long-term trials should consider microbiological analy-
ses right from the beginning. Such a combined monitoring 

could also take dynamics due to temporal variability into 
account enabling the disentanglement of short- and long-term 
effects of the interplay between agronomic management, crop 
species and soil microbial communities.
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